

Week 10 Application Activity
ME219 Computer Programming for Engineers

This week's exercise is based on problem 4.17 in your MATLAB book¹. The airplane shown is flying in a circular path with radius ρ , the bottom of which is located at a height h above the ground, with constant tangential velocity v . The airplane's position is being tracked by a radar station on the ground. In this exercise, you will be calculating the airplane's radial distance r and elevation θ relative to the radar station.

1. Start MATLAB, navigate to the directory where you want to save your work, and start a new m-file called "W10.m". Your program should do the following:
2. **PART 1:** using the 'input' command, prompt the user for v , ρ , and h . (When testing your code, try using the values $v = 50 \text{ m/s}$, $\rho = 2000\text{m}$, and $h = 500\text{m}$ as shown in your book).
3. **PART 2:** using the 'linspace' command, create a 100-element time vector going from zero to the time at which $\alpha = 90^\circ$. To calculate the upper time limit, calculate the circumferential distance traveled between $\alpha = 0^\circ$ and $\alpha = 90^\circ$, then divide by tangential velocity to get time.
4. **PART 3:** create a vector for α as a function of time, using the following relationship:

$$\alpha(t) = \frac{v}{\rho} t$$

5. **PART 4:** create vectors that represent the horizontal and vertical (x, y) coordinates of the airplane relative to the radar station, using the following equations:

$$x(\alpha) = \rho \sin \alpha$$

$$y(\alpha) = \rho(1 - \cos \alpha) + h$$

6. **PART 5:** convert your rectangular (x, y) coordinates into polar (r, θ) coordinates.
7. **PART 6:** using the 'min' command, determine the minimum value of θ , and the position in the θ vector where the minimum occurs. Use the latter as an array index to find the values of t and r where θ is minimized.
8. **PART 7:** using the 'fprintf' command, display a message in the command window that includes the minimal value of θ , as well as the t and r values where the minimum occurs.
9. **PART 8:** combine your t , r , and θ vectors into a single 3x100 matrix variable called voutput.

Then, write this matrix to an output file using the following steps:

- a. Use the 'fopen' command to create a new file called 'output.doc'.
- b. Use the 'fprintf' command to write the column headers 'TIME', 'DISTANCE', and 'ANGLE' to your output.doc file
- c. Use the 'fprintf' command to write your voutput matrix to the output.doc file
- d. Use the 'fclose' command to close your output file.

When finished, upload **BOTH** files (W10.m AND output.doc) to Blackboard using the link provided.

REFERENCE

1. Gilat A., *MATLAB: An Introduction with Applications*, 4th ed., Wiley, Hoboken, NJ, 2011.